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Abstract-The problem here is discussed when the heat-transfer coefficient a may be treated as constant. 
By means of example of the slug-flow in a finite length (in flow direction) flat duct with prescribed heat 
flux on the boundary the criteria1 moduli for the problem are derived and the ranges of their numerical 

values are determined. 

NOMENCLATURE 

a, duct half-width; 
d 
” 

equivalent thermal diameter in Jordan sense 
[l], (for the flat duct d, = 2. a); 

f(x/L), = f(t), arbitrary, continuous function 
describing the heat flux distribution along 
the duct walls; 

= g [fCt;)l; 

length of the heated (or cooled) duct-sector; 
= L/a; 
= 0, 1,2, . . . , successive integer number; 
maximal value of the heat flux for 0 < x < L; 

= (IrnEx~ r,lA. ti; 
= d,/2, (for the flat duct I, = a); 
fluid temperature; 
fluid velocity; 
dimensional coordinate parallel to the flow 
direction; 
dimensional coordinate normal to the duct 
walls. 

Greek letters 

a, heat transfer coefficient at the duct wall; 

rl, = yla; 
9, = (t - ti)/ti, dimensionless fluid temperature; 
K, molecular thermal diffusivity of the fluid; 
1, molecular thermaL conductivity of the fluid; 

5, = x/L; 
71, = 3.141593.. . . 

Subscripts 

initial value (inlet value) of the fluid 
temperature; 
mean value of the fluid temperature (bulk 
temperature); 
fluid temperature at the duct wall (for y = a 
or r] = 1). 

Dimensionless groups 

2.q, 

1 

criteria of admission of the assumption 
2. L/Pe, a = con& 
Pe, = w . d& = Re . Pr, Pecl& number; 
Pr, Prandtl number; 
Re, Reynolds number. 

SINCE the first pioneer-works of Graetz (1883, 1885) 
a great amount of research work has been performed 
in the field of the forced convection in ducts with 
various shapes of their cross-section. Many of these 
works, in particular the newer ones, were cited in the 
excellent book of Kays [2]. The enormous contribution 
to the knowledge on the forced convection in liquid 
metals has been gathered in the course of many years 
due to the research effort of Dwyer and his Group 
[3-15). A further illustration of the great research 
effort of investigators in many countries is shown 
in [16]. 

However, nowhere up to now, according to the 
author’s recognition, the question has been put, in what 
situations for finite length ducts the assumptions 
usually made about the heat-transfer coefficient a are 
admissible. It has been demonstrated in [2] that for 
fully developed flow with constant heat flux along the 
duct walls the heat-transfer coefficient a may be treated 
as constant and then: 

t,- t, = COW. (1) 

From this assumption it follows immediately that: 

dr, dt, ---_= 
dx dx 

0 

and : 

at dt, dt, -=_=-. 
dx dx dx 

(3) 

The above assumption introduced to the energy equa- 
tion causes the change of its type from parabolic to 
elliptic and makes its solution considerably easier. The 
assumption (1) and its consequences (2) and (3) were 
applied by Axford [17], Dwyer [8-141, Nijsing and 
Eifler [18] as well as by Ushakov et al. [19]. Strictly 
speaking, the problem of forced convection in ducts 
should be considered in the conjugated formulation, 
i.e. when the energy equations for the duct and for the 
ambient medium are solved simultaneously. 

Now the question can be posed whether the equation 
(2) holds always true for constant heat flux along the 
finite length duct wall, and, if not, under what hydraulic- 
thermal conditions the equation (2) may be treated as 
satisfied. 
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Therefore, it seems to be needed to create some The problem [4-71 after use of dimensionless co- 
criterion, which would make it possible to estimate the ordinates defined in Nomenclature takes the form: 
validity of equation (2). Such criterion should include: 
the geometrical parameters of the duct such as the 8’3 Pe 33 
length of the heated (or cooled) duct sector and the d$ 

-- = 0, 
2.T ?t 

(8) 

thermal radius of duct cross-section, as well as the 
hydraulic-thermal parameters: Reynolds and Prandtl 9(rl, 0) = 0, (9) 
(or PecM) numbers. 

Up to now, in all theoretical works concerning the 
generalized Graetz-problem the dimensionless co- 
ordinate in flow direction has been usually expressed 
in the form < = (x/r,)/(Re. Pr) = (x/r,)/Pe. In such 
definition the finite length of the duct does not appear 
distinctly. 
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FIG. 1. Model of the slug flow in a finite length flat duct with an arbitrary heat flux 
distribution along the bounding walls. 

Let us try to give an answer to the title question in 
the form of some criterion taking into consideration 
the example of the slug-flow between two infinitely 
thin plates with arbitrary (in flow direction) heat flux 
distribution. The slug flow through the flat duct has, 
therefore, been chosen, because in such cases the eigen- 
functions and the eigenvalues of the appropriate 
Sturm-Liouville problem can be most easily deter- 
mined. All considerations presented can be transferred 
onto more geometrically complicated ducts as well as 
on the laminar or turbulent flow. 

The two-dimensional temperature field in the fluid 
flowing through the duct shown in Fig. 1 is described 
by the energy equation in the following form: 

a*t w at 
---.-= 
ay2 K ax 0, (4) 

where accordingly to the considerations of Hsu [20] 
the axial conductivity of the fluid was neglected. 

The solution ofthis equation should satisfy the initial 
(inlet) condition: 

tb, 0) = ti = const (5) 

and the boundary conditions: 

2 
ay y=. = 

0 

1.f 
ay y=o= ~,,,.f(XlU. 

The solution of the above problem was obtained in 
[21] by use of the variables separation and is expressed 
as follows : 

x {g jiexp [-$.(n.a)‘.(C.-<‘)I 

f’(t) 
xf(C’).dT’+ -(n II , (12) 

where, for the reason of simple duct-geometry, constant 
velocity of the fluid and the absence of the function 
describing the distribution of the eddy diffusivity of 
heat, the eigenfunctions of the appropriate Sturn- 
Liouville problem are expressed as the infinite cosine- 
sequence {cos(n.n.q)} and the eigenvalues are the 
successive multiples of n-number. 

One can notice at once, that the solution in the form 
(12) satisfies the boundary conditions (10) and (11). The 
initial condition (9) is also satisfied, because: 

cos(n .7-c. f/) 
;-+ 2. i: (-1)“. (n,71)2 (13) 

“=I 
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Inserting (13) into (12) one obtains : 

%,5)=4. $$a o f(t’).dC 
[ -s 

+2.$ (-l)“.cos(n,n,q) 
n=1 

x {g.jIexp[--~.(rz.n)’ 

x W’)].f(C’)-dr.)]. (14) 

The above expression is the second equivalent form of 
the solution satisfying exactly the initial condition (9). 

The solution (14) is, except the criteria1 numbers, 
identical to the relation (40) given in [22]. This 
relation represents the solution of the unsteady heat 
conduction problem in a plate with the timedependent 
Neumann boundary condition. Such problem is the 
mathematical analogue of the problem considered 
(8-l 1). 

Integrating by parts the integrals appearing under 
the summation sign in relations (12) and (14) one can 
present these relations in the form easier for further 
consideration. Namely: 

3(,,0=,.$$ j~f(T.).dC'+~~-~).f(s) 
+2. f (-1)“. 

cos(n.n.$ 

n=l (n .7~)~ 

1 
x f’(5’). di (124 

and : 

xf’(Q.de II . (14a) 

The calculation of the bulk temperature by use of the 
expressions (12), (14), (12a) or (14a) leads to the formula: 

s 1 

o % 8. dtl 
s\,(s)= , 

_ 2.L 5 

I 
dq 

=+pe. 
s 

o f(S’).d4’. (15) 

0 

The relation (2) expressed in dimensionless form is : 

iW 

Using the above relations one can verify to what degree 
the assumed equality (2) or (2a) is satisfied. Namely: 

d9, as _=- 
dS at q=1 

= G.$-$ 
-[ 

f(5)+f-f’(5) 

$2.2 exp -2P+.(n.n)z.r .f(O) 
i [_ 

- 

VI=1 1 c + s [ exp 
0 

-~.(n.7#.(C-S.) 1 
f’(5) 

xf’(r’).dr--- 
(n.77)’ 

(16) 

and : 

(17) 

Taking (13) into consideration one can express (16) in 
the following form : 

dQw 

z 

Forming the difference between (16a) and (17) one 
obtains : 

- 02 

=2.@.+$. C exp 
n 1 I_[ - 

-2$.(n.x)2.C .f(O) 1 
+ -~.(n.n)‘.(S-t.)l..l.R.)d:.). (18) 

It can be at once noticed from the above relation that 
the exact fulfilment of equations (2) or (2a) with the 
varying heat flux along the duct walls (f(t) + 1, 
f’(t) f 0) could only be possible in the following cases: 

(a) 4 = 0 
(b) L = a, 
(c) Pe = 0. 

Only the case (a) is mathematically sensible, whereas 
the cases (b) and (c) lead to indefiniteness. From the 
physical standpoint the cases (a) and (c) have no sense 
and the case (b) is practically unrealizable. So it results 
from the above that equation (2) with uaryittg heat flux 
can never be satisjed exactly. 

Let us investigate now the situation with the constant 
heat flux along the wall of the finite duct, i.e. the case 
when f(t) = f(0) = 1 and f’(S) = 0. In this case the 
relation (18) takes the form : 

d9, d9, - m ---= 
d< d5 

2.ij.E. C exp (19) 
n 1 

The cases (a) to (c) considered above are also trivial 
for the constant heat flux at the duct wall. However, 
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some circumstances may take place when one can 
expect an approximate fulfilment of the assumption (1) 
as well as its consequences (2) and (3). It can be noticed 
at once that at the duct inlet (for 5 = 0) the equations 
(2a) or (2) will never be satisfied. Now, let us investigate 
the situation at the duct outlet (< = 1). In Table 1 there 
are listed the calculated values, which appear on the 
right side of equation (19) for some chosen values of 
parameters 2q and 2L/Pe. 

Table 1. Values of the difference (d3,/dt) - (d&/dt) 
for <= 1 

2LjPe 

2q 0.1 1.0 100 

0.1 3,91.1o-2 5.10-6 1.26. 1O-44 
1.0 3,91.10-’ 5.1o-5 1.26. 1O-43 

10.0 3.91.10 o 5. 1o-4 1.26. 1O-42 
10f5 3.91. 1o+4 5.10 o l-26. lo- 38 

An analysis of the above values allows to state that 
agood approximation of equation (2) (01 the admissibility 
of the assumption t( = const) may be expected only for 
the moderate values of the parameter 2~3 and for 
2t/Pe > 1. 

However, one can imagine such values of the par- 
ameter 2q, that even for the relatively long ducts (i.e. 
for 2L/Pe >> 1) the RHS of equation (2) will be much 
greater than zero. So, it results from the above that in 
such cases the assumption CI = const is not admissible. 
The assumption t( = const seems to be admissible for 
the ranges 0 < q < 100 and 2L/Pe > 1. These ranges 
seem to be valid also for other duct geometries as well 
as for the laminar and turbulent flow, because in such 
cases the eigenvalues are greater than the successive 
multiples of rc-number, [23] and [24]. 

The above considerations have shown that not only 
the constant heat flux at the duct wall and the fully 
developed flow (i.e. the invariable velocity profile) are 
sufficient conditions for the admissibility of the assump- 
tion CL = const and for all consequences resulting from 
it. 

It seems to be useful to supplement the assertion 
contained in [2] by the restriction expressed through 
the ranges of parameters 2q and 2E/Pe. 

The considerations presented above constitute 
further confirmation of the assertion by Luikov et al. 
expressed in [25] that in numerous cases the mixed 
boundary condition takes no physical sense. This is, 
ofcourse, a case when a may not be treated as constant. 
The solution process of the heat-transfer problem must 
then be performed accordingly to the principles appro- 
priate to conjugated problems presented in [22] 
and [25]. 

Acknowledgement--I am heartily thankful to Dr. Bohdan 
Krajewski for his scientific support during preparation of 
this paper. 

REFERENCES 
1. Grober, Erk and Grigull, Die Grundgesetze der W&me- 

iibertragung, p. 234. Springer, Berlin (1957). 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

LO. 

11. 

12 

13 

W. M. Kays, Konvyektivnyi tyeplo- i massoobmyen 
(Convective Heat and Mass Transfer), Russian trans- 
lation, p. 135. Enyergiya, Moskva (1972). 
0. E. Dwyer, Equations for bilateral heat transfer to a 
fluid flowing in a concentric annulus, Nucl. Sci. Engng 
15, 52-57 (1963). 
0. E. Dwyer and P. S. Tu, Unilateral heat transfer to 
liquid metals flowing in annuli, Nucl. Sci. Engng 15, 
58-68 (1963). 
0. E. Dwyer, On the transfer of heat to fluids flowing 
through pipes, annuli and parallel plates, Nucl. Sci. 
Engng 17,336-344 (1963). 
0. E. Dwyer, Bilateral heat transfer in annuli for slug 
and laminar flows, Nucl. Sci. Engng 19,48-57 (1964). 
0. E. Dwyer, Recent developments in liquid-metal heat 
transfer, Atomic Energy Rev. 4, 3-92 (1966). 
0. E. Dwyer, Heat transfer to liquid metals flowing 
in-line through unbaffled rod bundles: a review, NucI. 
Engng Des. 10, 3-20 (1969). 
0. E. Dwyer and H. C. Berry, Slug-flow Nusselt numbers 
for &line flow through unbaffled rod bundles, Nucl. 
Sci. Engng 39, 143-150 (1970). 
0. E. Dwyer and H. C. Berry, Effects of cladding thick- 
ness and thermal conductivity on heat transfer to liquid 
metals flowing in-line through bundles of closely spaced 
reactor fuel rods, Nucl. Sci. Engng 40, 317-330 (1970). 
0. E. Dwyer, P. J. Hlavac and M. A. Helfant, Heat 
transfer to mercury flowing in-line through an unbat%d 
rod bundle: effect of rod displacement on local surface 
temperature and local heat flux, Nucl. Sci. Engng 41, 
321-335 (1970). 
0. E. Dwyer and H. C. Berry, Effects of cladding thick- 
ness and thermal conductivity on heat transfer for 
laminar in-line flow through rod bundles, Nucl. Sci. 
Engng 42, 69-80 (1970). 
0. E. Dwyer and H. C. Berry, Laminar-flow heat transfer 
for in-line flow through unbaffled rod bundles. Nucl. 
Sci. Engng 42, 81-88 (1970). 

14. 0. E. Dwyer and H. C. Berry, Heat transfer to liquid 
metals flowing turbulently and longitudinally through 
closelv snaced rod bundles-Part I. NucI. Enana Des. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

23, 273-294 (1972). 
- ” 

0. E. Dwyer, H. C. Berry and P. J. Hlavac, Heat transfer 
to liquid metals flowing turbulently and longitudinally 
through closely spaced rod bundles-Part II. Uniform 
heat flux at the inner surface of the cladding, Nucl. Engng 
Des. 23, 295-308 (1972). 
0. E. Dwyer (editor), Progress in Heat and Mass Transfer. 
Vol. 7. Heat Transfer in Liquid Metals. Pergamon Press, 
New York (1973). 
R. A. Axford, Two-dimensional, multiregion analysis of 
temperature fields in reactor tube bundles, Nucl. Engng 
D&6, 25-42 (1967). 

_ 

R. Niisine and W. Eifler. Analvsis of liauid metal heat 
transfer ii assemblies ofclosely spaced ‘fuel rods, Nucl. 
Engng Des. 10,21-54 (1969). 
P. A. Ushakov, A. V. Zhukov and N. M. Matiuchin, 
Myetod obobshcheniya tyempyeraturnych polyei i 
tyeplootdachi v tryeugolnych i chyetyrychugolnych 
ryeshyetkach tsilindrichyeskich tvelov (A method of the 
temperature fields generalizing in the triangular and 
rectangular lattices of cylindrical fuel rods), Report 
FEI-163, Obninsk (1969). 
C.-J. Hsu, Theoretical solutions for low-Peclet-number 
thermal-entry-region heat transfer in laminar flow 
through concentric annuli, Int. J. Heat Mass Transfer 
13, 1907-1924 (1970). 
S. Golos, Trojwymiarowe rozwiazanie przybliione 
zagadnienia konwekcji wymuszonej w rdzeniach reak- 
torbw jadrowych z chlodzeniem metalicznym (Three- 
dimensional approximate solution of the forced con- 
vection problem in cores of liquid-metal cooled re- 
actors), IBJ-Report Nr. 1453/IX/R/B, Warsaw (1973). 
A. V. Luikov, Tyeoriya Tyeploprovodnosti (Theory of 



When is the heat-transfer coefficient a constant? 1471 

Heat Conduction), p. 161. Vysshaya Shkola, Moscow 24. A. P. Hatton and A. Quarmby, The effect of axially 
(1967). varying and unsymmetrical boundary conditions, Int. J. 

23. C. A. Sleicher and M. Tribus, Heat transfer in a pipe Heat Mass Tram@ 6, 903-914 (1963). 
with turbulent flow and arbitrary wall-temperature dis- 25. A.V.Luikov,V.A.AleksashenkoandA.A.Aleksashenko, 
tribution, Trans. Am. Sot. Mech. Engrs 79, 789-797 Analytical methods of solution of conjugated problems 
(1957). in convective heat transfer, Int. J. Heat Mass Transfer 

14, 1047-1056 (1971). 

QUAND PEUT-ON TRAITER LE COEFFICIENT DE TRANSMISSION 
DE LA CHALEUR a COMME UNE CONSTANTE 

RComC-On discute les conditions sous lesquelles le coefficient de transmission de la chaleur a peut 
&tre consid& comme constant. A l’aide de l’exemple de l’tcoulement piston dans un canal plan de 
longueur finie avec flux thermique impost B la paroi, un crittre a CtB obtenu pour ce type de probltime 

et le domaine des valeurs numbriques possibles est dirtermink. 

WANN DARF MAN MIT KONSTANTEN WARMEOBERGANGSKOEFFIZIENTEN 
RECHNEN? 

Zusammenfassung-Es wird die Frage behandelt, wann die Annahme eines konstanten WLrmetibergangs- 
koeffizienten a bei erzwungener Konvektion zuliissig ist. Dazu wird die Kolbenstrbmung betrachtet. Am 
Beispiel eines endlichen, ebenen Kanals mit vorgegebener WLrmestromdichte an der Wand werden die 

notwendigen Kriterien und der Bereich ihrer numerischen Werte festgelegt. 

KOrJJA jJOIlYCKAETCX PACCMATPMBATb K03@@MUMEHT 
TEIlJlOOTAALIM a IlOCTOJIHHbIM? 

hHOTWllSl - 06CyxAaeTCn npo6neMa, KOrAa AOllyCKaeTCR PaCCMaTpHEaTb K03+$HUHeHT TeNlO- 

0TAawi o! KaK IT~~TORHH~~O semwHy. Ha npHMepe cTepxHeBor0 TeyeHm B KoHewioM (B Hanpa- 

B~eHWUTe~eHWII)K~H~~~Me~AyTOHKHMB~~WTaMHCHeOAHO~OAHblMr~aHW'(HbIMyC~OB~eMBTO~OrO 

pOAa BblBeAeHbl KpHTepHW,bHble na,,aMeTpbl a TaKme OQRAe,leHbI HHTepBaJlbl IIX 'IUC,,eHHblX 

3HareHHii. 


